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ABSTRACT:
Classical ocean acoustic experiments involve the use of synchronized arrays of sensors. However, the need to cover

large areas and/or the use of small robotic platforms has evoked interest in single-hydrophone processing methods

for localizing a source or characterizing the propagation environment. One such processing method is “warping,” a

non-linear, physics-based signal processing tool dedicated to decomposing multipath features of low-frequency tran-

sient signals (frequency f< 500 Hz), after their propagation through shallow water (depth D< 200 m) and their

reception on a distant single hydrophone (range r> 1 km). Since its introduction to the underwater acoustics commu-

nity in 2010, warping has been adopted in the ocean acoustics literature, mostly as a pre-processing method for sin-

gle receiver geoacoustic inversion. Warping also has potential applications in other specialties, including

bioacoustics; however, the technique can be daunting to many potential users unfamiliar with its intricacies.

Consequently, this tutorial article covers basic warping theory, presents simulation examples, and provides practical

experimental strategies. Accompanying supplementary material provides MATLAB code and simulated and experimen-

tal datasets for easy implementation of warping on both impulsive and frequency-modulated signals from both biotic

and man-made sources. This combined material should provide interested readers with user-friendly resources for

implementing warping methods into their own research. VC 2020 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1121/10.0000937
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LIST OF NOTATIONS

The notations are organized into five subsections. In

each subsection, notations are ordered alphabetically.

General notations

f Frequency

fs Sampling frequency

j Unit imaginary number

k Wavelength

t Time

dt Time shift

Environment and experiment geometry

cw Water sound speed

cb Basement (seabed) sound speed

D Water depth

r Source/receiver range

qw Water density

qb Basement density

zs Source depth

zr Receiver depth

Signal related notations

g Green’s function or impulse response

/s Phase of the source

s Source signal

ts Source group delay

y Received signal

ydeconv Received signal after source deconvolution

ypc Received signal after phase compensation

yu Unwarped signal

yw Warped signal

Warping related notations

Df Frequency domain of the original signal

Dh
f Frequency domain of the warped signal

Dt Time domain of the original signal

Dh
t Time domain of the warped signal

fmin Minimal frequency of the original signal

f h
min Minimal frequency of the warped signal

fmax Maximal frequency of the original signal

f h
max Maximal frequency of the warped signal

f h
s Sampling frequency of the warped signal

h Warping function

K Number of samples of the warped discrete signal

M Time-frequency mask for modal filtering

N Number of samples of the original discrete signal
�t Continuous warped time

T Original time axis
�T Warped time axis

tmin Minimal time of the original signal

thmin Minimal time of the warped signal

tmax Maximal time of the original signal

th
max Maximal time of the warped signal

tn Time sample number n in the original time axis

tn Time sample number n in the warped time axis

tr Time origin for warping

Mode dependent notations (mode m)

am Modal amplitude

bm Imaginary part of the horizontal wavenumber

fc;m Cutoff frequency

km Real part of the horizontal wavenumber

m Mode number

M Number of modes

/m Modal phase

Wm Modal depth function

tm Modal travel time for an impulsive source at t¼ 0

sm Modal travel time for a frequency modulated source

with group delay tsðf Þ
vm Group speed

I. INTRODUCTION

A. Context

The development of underwater acoustic signal process-

ing was originally driven by military applications that

require advanced sonar processing (Ainslie, 2010) to detect

and localize quiet sources in an uncertain environment

(Dosso and Wilmut, 2011). These days, acoustic signal

processing also provides a major avenue for conducting

oceanographic research. For example, active acoustics

allows estimation of fish populations (Makris et al., 2006;

Stanton et al., 2018) while passive acoustic monitoring

(PAM) permits study of marine mammal seasonality and

regional presence (Mellinger et al., 2007). One factor com-

mon to all of these applications, civilian and military, is the

need for robust algorithms that incorporate the complexity

of the ocean environment, whose properties are only par-

tially known and variable in time and space. Numerous

attempts to adapt more advanced signal processing or beam-

forming methods to underwater acoustic data [e.g.,

matched-field processing methods (Baggeroer et al., 1993)]

have met with limited success, because most methods

require incorporating more knowledge about the oceanic

propagation environment than is typically available.

Furthermore, most advanced signal processing methods

require the use of extended time-synchronized array hydro-

phones to perform spatial and temporal filtering. The

deployment of such systems is awkward and expensive.

In this tutorial, we describe a relatively recent nonlinear

signal processing method—termed warping—that is dedi-

cated to the study of low-frequency (f< 500 Hz) transient

sounds recorded in coastal environments (water depth
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D< 200 m) after propagation over at least several kilo-

meters (range r> 1 km). Numerous underwater sounds of

interest fit into this category, including baleen whale vocal-

izations, airgun signals, or sounds from scientific tomogra-

phy experiments. The objective of warping is to extract

normally hidden features from the received signal that can

then be used by other algorithms to localize the transient

sound source, and/or to infer environmental information

along the propagation track.

One probably knows the warping word from a certain

famous science fiction TV show, in which warping is used

to bend space, such that ships can travel faster than light.

While this concept has been repudiated by the National

Aeronautics and Space Administration (NASA, 2015), it

nonetheless has concrete applications in signal processing,

where space (or time) can be warped virtually, using a com-

puter. What differentiates warping from other underwater

signal processing methods is that it requires only a single

hydrophone, and has proven robust to environmental uncer-

tainty: it usually works even without detailed prior informa-

tion about the environment. As will be seen shortly, the

method works well in real ocean environments, even though

the basic algorithm is derived from a simple idealized model

of a shallow ocean.

The fact that this method requires only a single hydro-

phone has profound implications, particularly for bioacoustic

studies. Passive acoustic recording systems are now routinely

used to detect the seasonal and regional presence of whale

species all over the world, including shallow continental shelf

waters in the arctic and along the U.S. eastern seaboard. This

is most often accomplished by deploying single-hydrophone

recording packages over wide regions. The presence of

baleen whale species in these data sets is identified by either

manual or automated review of spectrograms, and then

species-specific sounds are flagged (Leroy et al., 2018;

Moore et al., 2006; Thode et al., 2012). Subsequent localiza-

tion of animal sounds from these data sets is often desirable,

because source localization is a key step in establishing popu-

lation density estimates and evaluating subtle responses to

anthropogenic activities. However, this is rarely imple-

mented, because most traditional source localization methods

require the deployment of multiple hydrophones over wide

spatial regions, and complex measurements of relative arrival

times between sensors. In this tutorial, we demonstrate how

localization information can be extracted from both baleen

whale impulsive and frequency-modulated sounds from

single-hydrophone recordings in shallow water. Although

source localization is not the end goal of this tutorial, we will

nonetheless illustrate how baleen whale sounds can be local-

ized using warping methods. The conclusion of this demon-

stration is that hundreds of existing data sets may have

exploitable baleen whale localization (and environmental)

information embedded inside their recordings.

Bioacoustics is not the only application for warping.

Traditional ocean acoustic experiments typically involve the

use of array(s) of synchronized receivers. Hydrophone

arrays are useful as they improve the signal-to-noise ratio

(SNR), as well as increase the spatial diversity of the sam-

pled field. Arrays, and particularly vertical line arrays have

been extensively used for water column tomography and/or

geoacoustic inversion (Caiti et al., 2006; Chapman, 2012).

However, in shallow water, single hydrophone deployments

also provide valuable data if the sources involved are suffi-

ciently intense and broadband, because the frequency diver-

sity of the signal can substitute for the spatial diversity

normally sampled by a typical acoustic array (Hermand,

1999; Jesus et al., 2000). The warping method presented in

this tutorial further enables extraction of high resolution

information that can be used as the core of single-

hydrophone inversion schemes. To illustrate this, we will

demonstrate how propagation information can be extracted

from a tomographic source, and then used to localize it.

More complex inverse problems, such as tomography or

geoacoustic inversion, will be ignored to keep the focus of

this tutorial manageable, but relevant key references will be

provided.

While warping has demonstrated its utility and practi-

cality, its learning curve can be steep. Warping is applicable

to specific situations and does require expertise and some

judgment in order to be used properly, as automated meth-

ods for bulk warping do not yet exist. Hence, the objective

of this tutorial is to make warping understandable and avail-

able to any researcher that is interested in its application. To

meet this objective, this tutorial includes extensive supple-

mentary material1 that provides both MATLAB code and data

from several walk-through examples of biotic and abiotic

sound sources. The aim is to provide the reader with the

opportunity to easily try warping, to confirm they are using

the technique properly, and to facilitate their application of

the method on their own datasets.

B. Outline of the tutorial

This tutorial assumes that the reader has basic knowl-

edge about time-frequency (TF) analysis. In particular, we

assume that the reader knows how to generate and interpret

a spectrogram, a basic TF representation that is widely used

in ocean acoustics. We also mention that an additional non-

technical overview of most of the concepts presented in this

tutorial is provided in Bonnel (2018).

The tutorial is arranged so that most sections can be

read separately. This introduces some redundancy, but over-

all should make the tutorial most useful to readers that are

interested in specific topics. The remainder of the tutorial is

organized as follows:

Section II covers the basic background required to

understand the received signal, including the single receiver

context (Sec. II A), modal propagation (Sec. II B), the Pekeris

waveguide model (a simple model for coastal environments,

Sec. II C), and time-frequency analysis (Sec. II D).

Section III details the warping theory. It starts with sim-

ple explanations (Sec. III A), introduces the warping general

concepts (Sec. III B), and then details a specific warping

adapted to our modal dispersion concept (Sec. III C).
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Section IV presents the detailed warping algorithm—it

is intended for readers with preliminary knowledge about

warping, and can be skipped on a first reading. First, the

numerical implementation of warping is presented (Sec.

IV A). An example is then given, and remarks on the impor-

tance of time origin for warping are given (Sec. IV B).

Section V probably constitutes the heart of the tutorial

for beginners. It presents practical uses of warping, serving

as a template for using warping in specific scenarios. It starts

with a quick explanation on warping parameters (Sec. V A).

It continues with warping use for impulsive sources (Sec.

V B), and emphasizes the importance of correctly choosing

the time origin. It then presents warping use for sources that

are not impulsive, but whose waveform is known (Sec.

V C). Finally, the section ends by showing how warping can

be used when the source is an unknown frequency modula-

tion (Sec. V D), a typical situation for baleen whale calls.

Applications of warping are then covered in Sec VI.

First, modal filtering and dispersion curve estimation are

presented (Sec. VI A). Then, source localization is quickly

reviewed (Sec. VI B).

Last but not least, Sec. VII presents experimental exam-

ples that cover both warping and source localization. The

first example is an impulsive vocalization by a right whale

(Sec. VII A). The second example is a non-impulsive

controlled tomography source, whose waveform is known

(Sec. VII B). The last example is an unknown frequency

modulation by a bowhead whale (Sec. VII C). The various

steps of the analysis are shown, and the data used are pro-

vided in the supplementary material,1 so that readers can

process the data and confirm that their results match those

shown in the tutorial.

The tutorial ends with concluding remarks in Sec. VIII

and three Appendixes. A first Appendix delves into the dif-

ference between time and frequency warpings, which may

be of interest to specialist readers. A second Appendix

reviews the development of warping theory through the lit-

erature, to act as a guide for readers seeking further referen-

ces. A third and final Appendix details the derivations that

lead to numerical warping formulas.

Figure 1 shows the entire warping process as a flow-

chart, which provides a useful roadmap for the reader as the

tutorial progresses.

II. UNDERSTANDING THE RECEIVED SIGNAL

A. Single receiver context

The context considered in this tutorial is the study of

low-frequency transient signals (f< 500 Hz) that have prop-

agated in shallow water (D< 200 m) over at least a few

FIG. 1. (Color online) Flowchart of the modal filtering process using warping.
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kilometers. This low-frequency/shallow water requirement

ensures that acoustic propagation can be accurately modeled

using modal propagation, which lies at the heart of the

warping technique. While modes will be defined more pre-

cisely below, one can envision them as frequency-dependent

arrivals generated from energy arriving along different

routes between source and receiver. As a result, a signal

received at a hydrophone will actually contain several dis-

tinct modal (arrivals) components. If these components can

be isolated, one can use them to estimate the range and

depth of the source (e.g., by comparing the relative arrival

times and amplitudes of the arrivals) or infer details of the

sound speed profile or ocean bottom composition (e.g., by

measuring how the relative arrival times and amplitudes

change with frequency). Extracting individual modes from a

received signal is called modal filtering, and has been done

historically by spatially filtering data on vertical line arrays

(Buck et al., 1998; Neilsen and Westwood, 2002; Tindle

et al., 1978).

The key point of this tutorial is that under most low-

frequency shallow water environments, nonlinear signal

processing (warping) and TF analysis can be used to con-

duct modal filtering on a single hydrophone. Once modes

have been filtered, the fact that one has used a single

receiver or an array becomes unimportant, and the source

can be localized and/or the environment estimated using any

previously developed modal based inversion scheme. The

most popular method to do so is matched mode processing.

It was originally proposed for array data (Wilson et al.,
1988; Yang, 1987), and was later extended to single receiver

scenarios (Le Touz�e et al., 2008; Thode et al., 2017).

B. Modal propagation

This section describes modal propagation in shallow

water. Readers uninterested by further technical details can

go directly to Sec. II C. Readers who want to learn more

about it are referred to Frisk (1994) and/or Jensen et al.
(2011).

Acoustic propagation in shallow water is highly impacted

by interactions with the sea surface and the seabed. This envi-

ronment acts as an acoustic waveguide, which effectively

operates on the signal as a linear time-invariant system. In

other words, if one considers a source signal s(f) emitted at

depth zs, the signal yðf ; zs; zrÞ received at depth zr and range r
appears to have been filtered by the environment,

yðf ; zs; zrÞ ¼ sðf Þgðf ; zs; zr; rÞ; (1)

where gðf ; zs; zr; rÞ is the environmental filtering effect. The

quantity g has been assigned various names, including the

transfer function or Green’s function. Note that the inverse

Fourier transform of g is usually called the impulse

response. This term arises from the fact that if the source is

a perfect impulse at time t¼ 0, then the received signal will

simply become yðt; zs; zrÞ ¼ gðt; zr; rÞ, or the “response” of

the medium to the impulse.

In the context considered here, shallow water (water

depth D< 200 m) and low-frequencies (f< 500 Hz), the prop-

agation is conveniently described by normal mode theory,

provided that the ocean conditions (e.g., bathymetry, bottom

composition) vary little with distance from the origin (the

“range-independent” assumption). At ranges greater than a

few acoustic wavelengths, the resulting acoustic field can

then be interpreted as the sum of several modal components,

with each mode propagating dispersively (i.e., the effective

propagation speed varies with frequency). Formally stated,

gðf ; zs; zr; rÞ ¼
XM

m¼1

amðf ; zs; zrÞej/mðf ;rÞ; (2)

with M being the number of distinct propagating modes,

with each mode having a unique amplitude amðf ; zs; zrÞ and

a phase /mðf ; rÞ. This equation is derived from the acoustic

wave equation using the classic separation of variables

method in environments that are azimuthally symmetric and

range-independent.

Before continuing, note that modal amplitude primarily

depends on source/receiver depth, but not range, whereas

the modal phase (and thus modal travel time) depends pri-

marily on range, but not on source/receiver depth.

Of particular interest here is the modal phase

/mðf ; rÞ ¼ rkmðf Þ; (3)

where kmðf Þ represents the real part of the horizontal wave-

number of mode m. In other words, kmðf Þ is the spatial fre-

quency of mode m. It solely depends on the environment

(water depth, sound speed profile, seabed geoacoustic prop-

erties, etc.), but not on the experimental geometry. As a

result, the modal travel time

tmðf Þ ¼
1

2p
@/mðf ; rÞ

@f
¼ r

vmðf Þ
(4)

depends only on the range r and the environment. This envi-

ronmental dependence is expressed through the modal group

speed vmðf Þ ¼ @f=@kmðf Þ.
On the other hand, the modal amplitude is given by

amðf ; zs; zrÞ ¼ Q
Wmðf ; zsÞWmðf ; zrÞffiffiffiffiffiffiffiffiffiffiffiffiffi

kmðf Þr
p e�rbmðf Þ; (5)

with Wmðf ; zÞ being the modal depth function of mode m,

bmðf Þ the imaginary part of the modal wavenumber, and Q a

constant unimportant for our purposes here. The modal

amplitude clearly depends on both the environment and on

source/receiver depth through the modal depth function

Wmðf ; zÞ. It also weakly depends on range through, but this

is often ignored (Jensen et al., 2011).

The modal travel time [Eq (4)] and amplitude [Eq (5)]

have been given for the impulse response only. Let us now

consider a source signal sðf Þ ¼ jsðf Þje/sðf Þ. Equation (1)

shows that the received signal is a sum of modal components,

which are all similarly impacted by the source amplitude and
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phase. The received amplitudes become jsðf Þjamðf ; zs; zrÞ and

the received phase becomes /sðf Þ þ /mðf ; rÞ. As a result, the

modal travel times for a general received signal become

smðf Þ ¼ tsðf Þ þ
r

vmðf Þ
; (6)

where tsðf Þ ¼ ð1=2pÞ½@/sðf Þ=@f � is the source time-

frequency law. Note that if the source is impulsive, all the

frequencies are emitted at a single time t0 and tsðf Þ ¼ t0.

The quantity tsðf Þ is properly defined from a signal process-

ing point of view as the source “group delay.” In the same

manner, smðf Þ is defined as the group delay of the received

mode m. Because it marks a given mode’s location in the

time-frequency (TF) domain (e.g., on a spectrogram, see

Sec. II D), Eq. (6) is also called the TF dispersion curve.

Note that the derivations presented above assume that

amðf ; zs; zrÞ is effectively an amplitude while /mðf ; rÞ is effec-

tively a phase. In other words, we assume that amðf ; zs; zrÞ—
and thus Wmðf ; zÞ—varies slowly with f, while ej/mðf ;rÞ oscil-

lates more rapidly with respect to f. This is largely true for the

context considered here (low-frequency propagation in shallow

water). This decomposition may be questionable in other con-

texts, such as deep water (Emmetière et al., 2018).

C. A simplified coastal environment

In this section, we present a simple model of a coastal

environment. It will be used to illustrate modal propagation and

to generate simulated signals to be used throughout the tutorial.

A straightforward way to acoustically model coastal

environments is to consider an isovelocity fluid layer (the

water), between a perfectly reflecting surface (the sea sur-

face) and a semi-infinite isovelocity fluid basement (the sea-

bed). This model is called the Pekeris waveguide, it carries

the name of C. L. Pekeris, who first derived the associated

equations (Pekeris, 1948). The model does not include any

realistic range/depth dependence of the environment (e.g.,

water column stratification, seabed layers, etc.). Nonetheless,

it produces realistic modal features. It can thus be used as an

educational example. We will see later in the tutorial that it

can also be used as the core of many localization algorithms.

A Pekeris waveguide is fully defined by the parameters

of its water column and seabed. The following notations and

nominal values will be used throughout the paper:

• water column: depth D¼ 100 m, sound speed

cw¼ 1500 m/s, density qw ¼ 1000 kg/m3;
• basement (sediment): sound speed cb¼ 1600 m/s, density

qb ¼ 1500 kg/m3.

Using these parameters, one can use simple numerical

solvers (Jensen et al., 2011) to find modal wavenumbers

kmðf Þ, group speeds vmðf Þ, and depth functions Wmðf ; zÞ.
These can be further combined to simulate a propagated sig-

nal in the frequency domain [using Eqs. (2), (3), and (5)] as

well as in the time domain (going from the frequency

domain to time domain with an inverse Fourier transform),

or to directly predict modal travel time [using Eq. (6)].

Further details are not provided here. Rather, a MATLAB code

to simulate propagation in a Pekeris waveguide is provided

as supplementary material.1

Figure 2 illustrates the propagation of a pulse in a

Pekeris waveguide. Please note that some sediment attenua-

tion (0.2 dB=k) has been added in the seabed. This does not

change the general propagation features, but slightly

increases the modal separation, which makes the figure eas-

ier to understand.

The source signal considered here is a short broadband

pulse. It lasts less than 0.1 s, and most of its frequency con-

tent is within 25 and 75 Hz. Because modal group speed

depends on frequency, the duration of the pulse arrival

increases with range. This can be understood by thinking

about a marathon. All runners start at the same time, but the

gap between runners increases as the race progresses,

because their individual speeds are different. This can be

seen on Fig. 2 after propagation over 5 km: the duration of

the received pulse has nearly doubled. This effect, due to a

frequency dependent speed, is called dispersion.

However, two different dispersions co-exist for modal

propagation. For a given mode m0, the group speed vm0
ðf Þ

changes with frequency f, which is called intra-modal dis-

persion. As a result, the duration of a given mode increases

with increasing range. On the other hand, for a given fre-

quency f0, the group speed vmðf0Þ changes with mode num-

ber m, which is called inter-modal dispersion. As a result,

the gap between modes also increases with increasing range.

We can further develop the racing analogy by considering

several groups of runners (e.g., age classes), with runners

within the same age class displaying similar speeds, but

with different age classes displaying relatively larger differ-

ences in speed (with older age classes generally slower than

younger age classes). If all the runners/groups start the race

at the same time, one will not be able to distinguish the dif-

ferent age classes at the beginning. However, as the race

continues, the different age classes will separate along the

course. If the race lasts long enough, then the age classes

may end up being completely separated in time, arriving

past the finish line in distinct waves. Since runners within a

given age class do not have exactly the same speed, timing

gaps between runners in the same age class will also appear,

causing a time spread in the finishing time within an age

class. From a modal perspective, a running age class repre-

sents a given mode arrival, the time spread between runners

within an age-class represents intra-modal dispersion, and

the timing spread between age classes represents inter-

modal dispersion. These concepts are further illustrated in

Fig. 2. At 15 km range, one can see two modes that are

nearly separated: mode 1 arrives between t ’ 0 to t ’ 0:20 s,

while mode 2 arrives between t ’ 0:15 to t ’ 0:40 s. There

is also a third mode, barely visible after t ’ 0:35 s. At

30 km, the first two modes have become fully separated in

time. This example also nicely illustrates how the duration

(spread) of an individual mode arrival increases with range.

This is particularly evident for mode 2, which lasts more

than 0.4 s when r¼ 30 km.
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While mode duration/travel time changes with range,

one can also see from the right column of Fig. 2 that the rel-

ative mode amplitudes depend on source/receiver depth.

This is particularly evident for mode 2, as can be seen on

the second column of Fig. 2. This phenomenon, mentioned

in Sec. II B, is due to the oscillations of the modal depth

functions (and thus the mode amplitudes) with depth. It will

not be further explored in this tutorial.

D. Time-frequency representations

The example shown in Fig. 2 provides a first illustration of

modal propagation. However, modal dispersion becomes easier

to understand when the signal is plotted in the TF domain.

Indeed, by using TF representation, one can directly visualize the

modal dispersion. This is illustrated in Fig. 3, which presents ide-

alized TF representations of underwater signals. The right part of

the figure (with the warped signal) can be ignored for now.

The first line of Fig. 3 illustrates the propagation of an

impulsive source. Such a source is a vertical line in the TF

domain, because all frequencies are emitted at the same

time. After propagation, one can see several structures in the

TF domain, because several modes are propagating. Each

mode is a curve with high frequencies arriving before low

frequencies. This is because in general, for shallow water

environments, group velocity is higher for high frequencies,

and thus travel time is smaller. Note that warping is based

on the hypothesis that low order modes arrive first and that

modes do not cross in the TF domain, a situation representa-

tive of most shallow-water modal propagation. Specific

cases where the hypothesis is severely violated (and thus

warping does not work at all) are discussed in the conclusion

of the article. The remainder of the article assumes that this

hypothesis (conventional shallow-water modal propagation)

is verified, at least over the frequency band of interest. As a

reminder, the formula for dispersion curves (the blue lines

in Fig. 3) is given by Eq. (6).

The second line of Fig. 3 illustrates the propagation of a

frequency modulated source. In the example considered

here, the source signal is a linear downsweep: the frequency

FIG. 2. (Color online) Simulated signal in a Pekeris waveguide with attenuation in the seabed. On each panel, the signal amplitude is arbitrarily normalized.

The figure reproduces an example provided in Jensen et al. (2011) (pp. 636–640).

J. Acoust. Soc. Am. 147 (3), March 2020 Bonnel et al. 1903

https://doi.org/10.1121/10.0000937

https://doi.org/10.1121/10.0000937


gradually decreases with time. The interpretation of the

received signal is the same as for the impulsive source. If

one goes back to the race analogy, the impulsive source case

is a race where all runners start together. On the other hand,

the FM source context represents a race where runners have

a staggered start. The delayed departure effectively delays

their arrival time, which globally shifts the arrival pattern.

E. Spectrogram

Figure 3 is an ideal TF representation, which is impossi-

ble to obtain in reality. Any true TF representation is con-

taminated by TF uncertainty (Boashash, 2015), which

makes it impossible to perfectly isolate a signal both in time

and frequency. As a result, one cannot obtain infinitesimally

thin lines—as in Fig. 3—to represent modes. Also, one will

have to deal with interferences between modes, particularly

at short ranges where mode time separations are small.

The spectrogram is one of the easiest TF representations

to generate, and is the default choice for most practical

applications. The spectogram’s main feature is that it mini-

mizes the interferences between signal components (in our

context, modes), and thus we will use the spectrogram in

this tutorial. The trade-off is that a spectogram provides a

really poor TF resolution of these components (i.e., the

mode dispersion curves). The dispersion curve estimation

issue will be dealt with later (see Sec. VI A).

It is beyond the scope of this tutorial to detail how spec-

trograms are computed. Readers who want more back-

ground on it are referred to Boashash (2015). For practical

matters, a MATLAB code to compute spectrograms is provided

as supplementary material.1,2

Examples of spectrograms simulated in a Pekeris wave-

guide are presented in Fig. 4. The figure shows the time signal

in the upper panels, and the spectrograms in the middle panels.

As explained before, modal time separations increase with

range. At large ranges (i.e., 30 km), modes are well time-

separated and thus barely interfere. At intermediate ranges

(i.e., 15 km), one can still easily distinguish between modes,

although there is some interference between them. However,

at short ranges (i.e., 5 km), it becomes impossible to clearly

distinguish between modes. Nonetheless, the strong, regular

fluctuation in intensity vs frequency on the short-range spec-

trogram provides a clear indication that several modes exist in

the signal, even if they are not distinctively separated in time.

One may look at Crance et al. (2015) (their Fig. 3) for an

experimental example of this phenomenon, where the consid-

ered signal is a fin whale vocalization recorded in the Arctic.

III. WARPING: THEORY

The main objective of warping is to facilitate modal sepa-

ration of ocean waveguide signals, particularly for those pro-

duced at short- to mid-ranges. In a single receiver context, it is

reasonable to resort to TF analysis to separate the modes.

However, classical methods are not adapted to represent signals

with non-linear time dependence, such as normal mode arrivals.

As a result, warping can be used to “linearize” the modes, so

that the transformed signal can then be conveniently processed

using standard TF methods, such as the spectrogram.

A. Understanding warping

Warping is either a compression or stretching of a sig-

nal over time. In our context, the signal is recorded on a

FIG. 3. (Color online) Time-frequency diagrams illustrating propagation and warping for an impulsive source (top line) and a frequency-modulated source

(bottom line). Figure adapted from Bonnel et al. (2014).
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single hydrophone as a function of time. As a result, the only

way to compress/stretch the signal is to warp the time axis—

or, equivalently, the frequency axis. If the signal were

recorded on an array, one could also warp a spatial (or wave-

number) axis. Mathematically, space and time warping are

equivalent, but in this tutorial we only present time warping.

Before delving into the math, the warping effect on a

continuous tone is illustrated in Fig. 5. The considered sig-

nal is color-coded, to better visualize the warping effect: the

original signal contains an homogeneous ratio of colors.

Figure 5(a) presents the original continuous tone signal.

Figure 5(b) presents the signal after a linear compression.

One can see that the signal duration is shorter, and the signal

is oscillating faster, i.e., frequency is higher. On the other

hand, Fig. 5(c) presents the signal after a linear stretching.

The signal duration is now longer, resulting in slower oscil-

lations and thus a lower frequency. Although the lengths of

the two warped signals [Figs. 5(b) and 5(c)] have been

changed, the color ratio is still homogeneous. This is

because the signals have been linearly (i.e., homogeneously)

compressed/dilated.

Non-linear warping is illustrated in Fig. 5(d) (compres-

sion) and Fig. 5(e) (stretching). The result of the non-linear

transformation is that the frequency of the warped signal

varies with time. This is particularly evident in Fig. 5(e),

where frequency increases as time evolves. This occurs

FIG. 4. (Color online) Simulated signal in the Pekeris waveguide at various ranges: 5 km (first column), 15 km (second column), and 30 km (third column).

FIG. 5. (Color online) Illustration of warping. (a) Original signal, continuous tone. Linear warping, both (b) compression and (c) stretching. Non-linear

warping, both (d) compression and (e) stretching. The scale of the time axis is the same for all the plots. The scale of the vertical axis is the same for all the

plots, except for panel (d).
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because the signal has been stretched non-uniformly over

time. In the example presented here, the beginning of the sig-

nal has been stretched more than its end. This non-linear effect

is further illustrated by the signal colors. Indeed, color ratio is

homogeneous on the original signal [Fig. 5(a)] but becomes

inhomogeneous after non-linear warping [Fig. 5(d) and 5(e)].

As an example, blue dominates the warped signal in Fig. 5(e).

One can also see from Fig. 5 that warping modifies the

signal’s amplitude [note that the scale of the vertical axis

is the same for all panels but Fig. 5(d)]. As discussed below,

the warping operation is designed so that it does not modify

the overall energy of the signal. As a result, if a signal is

shortened (compressed in time), its amplitude must increase

in order to conserve energy. Consequently, the signal that

has been linearly compressed [Fig. 5(b)] has a higher ampli-

tude than the original signal [Fig. 5(a)]. For the same reason,

the signal that has been linearly stretched [Fig. 5(c)] has a

smaller amplitude than the original signal. For non-linear

warping, the situation is more complex, and the amplitude

must be adjusted over time, depending on the amount of com-

pression/stretching that is occurring at that instant. One can

see that the amplitude of the signal in Fig. 5(e) (non-linear

stretching) is increasing with time. This is consistent with the

previous observation, since the beginning of the signal has

been stretched more than its end. In the same way, the ampli-

tude of the signal in Fig. 5(d) (non-linear compression) is

decreasing with time. This is because the beginning of the

signal has been more compressed than its end.

B. Mathematical definition of warping

Mathematically, warping is a substitution. One replaces

time t by something else, say h(t), which is called a warping

function. Considering an original signal y(t), the warped sig-

nal ywðtÞ is obtained through

ywðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jh0ðtÞj

p
y hðtÞ½ �; (7)

where h0ðtÞ is the time derivative of the warping function.

The factor
ffiffiffiffiffiffiffiffiffiffiffiffi
jh0ðtÞj

p
ensures energy conservation between yw

and y, it arises from integration by substitution while equat-

ing the energy of y with the energy of yw. As a reminder,

energy conservation has been discussed in Sec. III A, and

can be visually observed in Fig. 5.

An important property of the warping function h(t) is

that it must be bijective (i.e., all points in a function are

uniquely matched to all points in a second function). As a

result, its (functional) inverse h�1ðtÞ can be defined, and so

warping can be reversed. Any signal warped with h(t) can

then be unwarped using h�1ðtÞ as the new warping function.

In other words, there is a one-to-one correspondence

between all points in y and yw, so that it is possible to go

from one to the other using either warping or inverse warp-

ing. In practice, warping (and inverse warping) are applied

as a non-linear resampling, as detailed in Sec. IV.

The warping definition, Eq. (7), shows that the basic

requirement for warping is to choose an appropriate warping

function. To do so, one must remember the warping

objective (see the introduction of Sec. III), which is to

“linearize modes,” or more generally, to linearize a signal.

This is a shortcut for saying that we actually want to linear-

ize the phase of the signal.

To understand this, let us consider a signal

yðtÞ ¼ aðtÞej2pf0UðtÞ, with a(t) its amplitude, UðtÞ its (non-lin-

ear) phase, and f0 a constant. To linearize the phase of y(t)
one must choose hðtÞ ¼ U�1ðtÞ as the warping function.

The warped signal becomes ywðtÞ ¼ bðtÞej2pf0t, with bðtÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
jh0ðtÞj

p
a½hðtÞ� the amplitude of the warped signal, and

2pf0t its phase which is now linear. Going back to Fig. 5,

one can imagine that the original signal with a non-linear

phase is shown in Fig. 5(d) [or, equivalently, Fig. 5(e)],

while the warped signal with a linear phase is shown in Fig.

5(a).

Before going further, note that our focus has been warp-

ing in time. However, one may also consider warping in fre-

quency. In this case, one takes a signal in the frequency

domain (i.e., after a Fourier transform), and then compresses/

stretches the frequency axis (which is now the independent

variable). This is not useful for the remainder of the tutorial,

and thus will not be discussed further. However, an Appendix

provides a comparison between time and frequency warping.

C. Dispersion based warping

In Sec. III B, we showed that an adequate choice of the

warping function allows reaching the warping objective: line-

arizing the phase of the signal. However, to do so, one needs

to know the phase of the signal [UðtÞ] in order to choose the

correct warping function [hðtÞ ¼ U�1ðtÞ]. This, unfortu-

nately, is a chicken and egg problem. One needs to know the

expression of the phase to warp the signal. But if the phase is

perfectly known, one usually does not need warping.

One way to circumvent the issue is to use an approximate

model of UðtÞ, knowing it is not perfect, but hoping it will be

good enough for real-life applications. To do so in our under-

water acoustics context, one needs to use knowledge about the

underlying physics driving modal propagation.

However, our modal propagation context brings an

extra complication. Several modes are propagating, and the

phase of the modes is different from one mode to the next.

As a result, one needs to either find a warping function that

is adapted to every mode at once, or to define a different

warping function for each mode.

As stated in the introduction of Sec. III, this tutorial

focuses on the first option. We want to warp all the modes at

once, so that the warped signal can be conveniently studied

using a conventional spectrogram. The ideal results of warp-

ing are illustrated on the right side of Fig. 3. All the modes

have been transformed into continuous tones and appear as

horizontal lines in the TF domain.

1. Warping model: The isovelocity waveguide

The simplest model of shallow water propagation that

captures the basic physics of dispersion is the so-called

“ideal isovelocity” waveguide. It is a range-independent

1906 J. Acoust. Soc. Am. 147 (3), March 2020 Bonnel et al.

https://doi.org/10.1121/10.0000937

https://doi.org/10.1121/10.0000937


waveguide with a perfectly reflecting surface, a constant

water sound speed cw, and a perfectly rigid seabed. In other

words, the sea-surface is a perfect acoustic mirror, the water

column is acoustically homogeneous, and the sound does

not penetrate in the seabed.

The isovelocity waveguide is simpler than the Pekeris

waveguide that was presented in Sec. II C, but less realistic.

Its main interest here is that closed-form equations can be

obtained for all the modal quantities. Of particular interest

for us is the equation for modal phase, whose expression

shows all modes can be warped using the same non-linear

transform in time.

As a first step, let us write the received signal in the

time domain as

yisoðtÞ ¼
XMiso

m¼1

amiso
ðtÞej/miso

ðtÞ; (8)

with Miso the number of propagating modes in the ideal wave-

guide, amiso
ðtÞ the modal amplitude, and /miso

ðtÞ the modal

phase.

For a source/receiver range r, the modal phase is given by

/miso
ðtÞ ¼ 2pfc;m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � t2

r

q
; t > tr; (9)

with tr ¼ r=cw (the earliest time at which any signal energy

can reach the sensor), and fc;m ¼ ð2m� 1Þcw=4D (the cutoff

frequency of mode m in the waveguide), and D the water

depth.

Note that Eqs. (8) and (9) are given in the time domain,

while the classical modal equations (2) and (3) are given in

the frequency domain. Equation (8) is obtained from Eq. (2)

using an inverse Fourier transform. The specific terms

amiso
ðtÞ and /miso

ðtÞ can be analytically derived using a sta-

tionary phase approximation.

The interesting feature of the modal phase [Eq. (9)] is

that it can be separated into a term (2pfc;m) that depends on

modal number m only, and a term nðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � t2

r

p
that

depends on time t only. This specific separation of variables

allows all modes to share the same warping transformation.

2. Warping function

To define the warping function let us assume propaga-

tion in an isovelocity waveguide and that the source is

impulsive. In this case, the modal phase Eq. (9) can be used

directly to define the warping function.

Following the derivation in Sec. III B, we will use the

warping function hðtÞ ¼ n�1ðtÞ, or

hðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ t2

r

q
: (10)

The function for inverse warping is obtained as

h�1ðtÞ ¼ nðtÞ, or

h�1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � t2

r

q
: (11)

Using h(t) as the warping function, the warped signal

becomes

ywiso
ðtÞ ¼

XMiso

m¼1

bmiso
ðtÞej2pfc;mt; (12)

with bmiso
ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
jh0ðtÞj

p
amiso
½hðtÞ�. Each warped mode is thus

transformed into a continuous tone of frequency fc;m, with

amplitude bmiso
ðtÞ. What began as a series of frequency-

modulated swept tones now appears as a set of parallel hori-

zontal lines in the TF domain, as illustrated on the right side

of Fig. 3.

Obviously, warped modes will be perfectly horizontal

only if the signal under study has propagated within an

actual ideal waveguide, which is never the case in reality.

However, we have empirically observed that Eq. (10) is

robust enough that when it is applied to real modes propa-

gating in much more complex environments, the resulting

transformed modes are still relatively tonal. This property is

illustrated in the lower panels of Fig. 4 for propagation in a

Pekeris waveguide. One can see that the warped modes are

not the theoretically predicted pure tones (i.e., perfectly hor-

izontal lines), but instead are tilted and slightly curved.

Nonetheless, each warped mode is still separable using sim-

ple filtering methods. This robust behavior is characteristic

of most shallow water experimental data, which will be

illustrated through several examples below.

IV. WARPING: ALGORITHM

This section gives technical details about warping

implementation. An important detail is that warping theoret-

ically requires the knowledge of the source emission time,

which is used as the time origin. Readers encountering

warping for the first time can skip this section and go

directly to Sec. V.

A. Numerical implementation of warping

This section summarizes all the formulas that enable a

practical implementation of warping. A thorough derivation

for these formulas is provided in Appendix C.

1. Warping

Let us consider a signal y(t), with tmin < t < tmax. Its

discrete version, sampled at frequency fs, is denoted y½n�,
with n 2 v0; N � 1b. The continuous warped signal, ywðtÞ, is

obtained through Eq. (7). We are interested here in its dis-

crete version, denoted yw½k�, with k 2 v0; K � 1b.
A convenient sampling frequency for the warped signal

is f h
s ¼ 2=DtN , with

DtN ¼
1

fs

tmax

h�1ðtmaxÞ
: (13)

The corresponding number of samples is

K ¼ ceil h�1ðtmaxÞ � h�1ðtminÞ
� �

f h
s

� �
; (14)
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with ceil(x) the nearest integer greater than or equal to x.

Finally, the kth sample of the warped signal is

yw k½ � ¼

ffiffiffiffiffiffiffiffiffiffi
tk

hðtkÞ

s
y hðtk Þ
� �

; (15)

with tk ¼ k=f h
s ; hðtk Þ ¼ ðtk

2 þ t2
r Þ

1=2
, and the quantity

y½hðtk Þ� is obtained from the original discrete signal y
through interpolation.

2. Inverse warping

Inverse warping can be seen as forward warping using

h�1ðtÞ as the warping function. However, the sampling fre-

quency and the number of samples of the signal after inverse

warping are already known: they are the same as for the

original signal: fs and N.

Let yw denote the warped signal and yu the unwarped

signal, recovered from yw using inverse warping. The nth

sample of the unwarped signal is

yu n½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tn

h�1ðtnÞ

r
yw h�1ðtnÞ
� �

; (16)

with tn ¼ tmin þ n=fs; h�1ðtnÞ ¼ ðt2
n � t2r Þ

1=2
, and the quan-

tity yw½h�1ðtnÞ� obtained via interpolation of the warped dis-

crete signal yw.

B. Example

As a simple example, let us consider a continuous tone

and try warping. A 5 Hz sine wave, sampled at fs¼ 100 Hz

and lasting 2 s (N¼ 201) is plotted in Fig. 6. It is warped

using the method presented above, using tr ¼ r=cw, where

r¼ 10 km and cw¼ 1500 m/s. The warped signal, as well as

the signal recovered after forward and inverse warping, are

also plotted in Fig. 6. One sees the perfect match between

the original signal and the recovered signal, illustrating the

reversibility of the warping operation.

Note that the time axis shown in Fig. 6(a) starts at t¼ 0 s.

This is in violation of warping theory, which states that the

signal of interest exists only for time t > r=c [see Eq. (9)

which shows that the signal phase is not defined for t � tr].

However, in practice, one rarely knows the absolute time ori-

gin. A common practice is to set t¼ 0 as the initial sample of

the signal of interest, as has been plotted here (and will be

done for all the warping examples in this tutorial).

Nonetheless, the correct time origin needs to be used in

the warping code. The algorithm provided as a supplemen-

tary material1 uses a mathematically correct time axis, in

that it assigns a time t ¼ r=cþ 1=fs to the first time sample.

The accompanying plotting scripts, however, always plot

the first sample as t¼ 0.

V. PRACTICAL CONSIDERATIONS WHEN WARPING

A. Warping parameters

The warping function, hðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ t2

r

p
, requires the

choice of a single parameter tr ¼ r=c. Since we will later be

interested in source localization, one may think this involves

circular reasoning, since range is something we eventually

want to estimate, but the warping process needs an estimate

of tr, which in turn requires a range estimate. However,

warping is always followed by inverse warping, which

effectively removes any effect of the warping parameter

tr ¼ r=c. As a result, any source localization result obtained

with the extracted modes (which have been warped and

unwarped) will be independent of tr, and thus to the trial

range chosen as a warping parameter.

In practice, warping results are only weakly sensitive to

the choice of tr, and it is not required to know the range nor

the water sound speed to apply warping. All the signals pre-

sented in this tutorial, including the experimental ones, have

been warped using r¼ 10 km and c¼ 1500 m/s (while true

ranges are between 5 and 15 km). However, warping is

much more sensitive to other factors, such as the choice of

the time origin. This will be detailed below.

B. Impulsive signals and time origin identification

If the signal is impulsive, warping is straightforward,

because the warping function has been defined with this

assumption (see Sec. III C 2). An important step, though, is

identifying the appropriate time origin.

As explained in Sec. IV B, one does not use the true

time origin of the data. Rather, one identifies a time sample

that corresponds to t ¼ r=cw þ 1=fs and uses that as the start

of the target signal. All the previous samples corresponding

to t � r=cw are thus dropped before applying warping.

In an ideal waveguide without noise, no signal can exist

before t ¼ r=cw. The acoustic energy only starts to arrive at

t ¼ r=cw, and slowly decays for time t > r=cw. In this case,

identifying the appropriate sample to denote time origin of
FIG. 6. (Color online) Example of warping and inverse warping on a tonal

signal. Note that the time axes of the two subfigures are different.
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warping is trivial: simply mark the time that the signal

becomes non-zero.

However, real life is more complex, even if we still con-

sider a noiseless environment. For example, the water column

usually has a depth-dependent sound speed, so that cw is not

uniquely defined. Furthermore, acoustic energy also pene-

trates the seabed, which usually has a larger speed than the

water column. As a result, even if the water column is isove-

locity, acoustic energy will arrive at the receiver before

t ¼ r=cw. This is illustrated in Fig. 7, which shows an impul-

sive signal simulated in a noisy Pekeris waveguide (see

Sec. II C), with SNR¼ 20 dB. Time t ¼ r=cw ’ 6:67 s and

t ¼ r=cb ¼ 6:25 s are identified with vertical lines. One can

see acoustic energy before t ¼ r=cw, which corresponds to

sound traveling through the seabed. These bottom arrivals are

particularly visible for mode 1, with energy between 5 and

15 Hz at times between 6.3 and 6.75 s. The specific TF point

where a dispersion curve bends is called the Airy phase
(Jensen et al., 2011, pp. 124–126). It is the last modal arrival,

and thus corresponds to the group speed minimum. The

acoustic energy at frequencies below the Airy phase mostly

propagates within the seabed and is usually called a ground
wave. It is thus highly attenuated and usually difficult to see

in real data. However, in this case Airy phase and ground

waves of mode 1 are clearly visible, they are respectively

denoted by a black cross and a black ellipse in Fig. 7(b).

Regardless of these complications, when warping a sig-

nal one needs to make a guess and pick a time origin that is

as close to t ¼ r=cw as possible. We suggest using an itera-

tive trial and error process. First, look at the original signal

(both time domain and spectrogram) and try to assess the

time of arrival of the highest frequencies, which tend to

experience the least dispersion and thus approach tr. Then,

warp the signal using this time origin estimate. Last, verify

the warping results by looking at the spectrogram of the

warped signal. If needed, change the time origin and iterate.

Usually, a few iterations are enough to obtain a “adequate”

warped signal Bonnel et al. (2017). By “adequate” we mean

that the warped modes are relatively horizontal and cleanly

separated on the warped spectrogram, and can thus be iden-

tified and filtered (see Sec. VI A).

The influence of time origin on warping is illustrated

in Fig. 8. The signal considered here is the one shown in

Fig. 7. Three different time origins are considered here: an

accurate one which corresponds to t ¼ r=cw, an early one

(t ¼ r=cw � dt), and a late one (t ¼ r=cw þ dt), where

dt¼ 0.1 s, which is about 10 samples. Such a large dt is

probably too extreme for a realistic mistake, but it nonethe-

less provides intuitive insight. Even when using the correct

time origin [Fig. 8(b)], one can see that the modes are not

perfectly horizontal, due to the mismatch between the wave-

guide environment (a Pekeris waveguide), and the idealized

analytical model used for warping (an ideal waveguide with

a rigid bottom). However, the warped modes have become

well-separated, when compared to the spectrogram in Fig. 7.

When using a time origin that is too early [Fig. 8(d)], the

modes are definitely not horizontal tones, but span a wider

bandwidth across the warped spectrum. They thus overlap

and interfere with each other, which will negatively impact

further filtering. Finally, when the time origin is later than tr
[Fig. 8(f)], the modes become virtually horizontal. In this

specific case, delaying the time origin helps compensate for

the mismatch between the environment and the warping

model, and is an ideal choice for separating modes 2 and

higher. However, this improved separation comes at a price:

mode 1 has vanished in the warped spectrogram. In shallow

water propagation the first mode is generally the least

impacted by dispersion, and as a result most of its energy

arrival is close to tr. It is thus typically removed from the

signal if a late time origin is chosen.

FIG. 7. (Color online) Impulsive signal simulated in a noisy Pekeris waveguide, with SNR¼ 20 dB. (a) Times series of the simulated signal and (b) corre-

sponding spectrogram. On (b), the black cross shows the Airy phase of mode 1, and the black ellipse the corresponding ground wave.
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In a real life scenario, we advise choosing the latest

time origin that provides a decent modal separation without

clipping mode 1. In certain cases, it may be useful to warp

twice: the first using an early time origin for mode 1, and

second using a later time origin for the other modes. When

doing this though, one must be careful to time-align the

recovered modes correctly.

C. Non-impulsive signals and source deconvolution

If the signal is not originally impulsive, it is necessary

to compensate for the signal structure. In principle, if one

had a very good knowledge of the source signal, one could

perform source deconvolution. The basic idea is to divide

Eq. (2) by s(f) in order to completely cancel frequency-

dependent variations arising from the source signal.

When s(f) is well known, source deconvolution is

straightforward. The only concern is to prevent division by

zero (or small values), at frequencies where s(f) is (near)

null. The easiest and most classical deconvolution method is

probably (Clayton and Wiggins, 1976)

ydeconvðf Þ ¼
yðf Þs�ðf Þ

maxfjsðf Þj2; �g
; (17)

with e a small number, which is usually chosen as a small

percentage of maxfjsðf Þj2g. This method is often called

“water-level deconvolution”, with � the water level

parameter.

The importance of source deconvolution is illustrated

below, using our noisy Pekeris waveguide from Fig. 7.

However, here we incorporate a more complex source signal:

a set of three perfect impulses with decreasing amplitude, and

a separation of 75 ms between pulses. Although not fully real-

istic, this model captures key features of several controlled

sources that are used for acoustical oceanography, such as

light-bulbs (Heard et al., 1997), combustive sound sources

(CSS) (McNeese et al., 2010), or explosives (Chapman,

1985). All these source systems produce an important impul-

sive signal that is often followed by secondary weaker impul-

sive signal(s), usually called bubble pulse(s).

The simulation results are illustrated in Fig. 9. The

noisy impulse response and the corresponding warped signal

are shown in the first column. Note that Fig. 9(b) is exactly

the same as Fig. 8(b), in that we are using an accurate time

origin, which allows us to visually assess the effect of

source deconvolution.

The simulation that takes into account the source signal

is shown in the second column of Fig. 9. One can see in the

FIG. 8. (Color online) Impact of time origin on warping. (a) Time series with accurate time origin and (b) spectrogram of the corresponding warped signal.

(c) Time series with an early time origin and (d) spectrogram of the corresponding warped signal. (e) Time series with a late time origin and (f) spectrogram

of the corresponding warped signal.
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original spectrogram that modal dispersion is barely visible.

This is because modes from the main impulse are mixed

with modes from the bubble pulses. This is further con-

firmed by the spectrogram of the warped signal, where

modes cannot be identified.

As a last step, source deconvolution is applied, and

results are illustrated in the third column of Fig. 9. One can

now clearly see the modes, with spectrograms that are virtu-

ally equivalent to those obtained when working on the

impulse response.

For in situ signals, source deconvolution requires a

good measurement (or model) of the source signal. In a

warping context, it has been successfully applied on light-

bulb (Duan et al., 2016) and CSS data (Bonnel et al., 2019;

Bonnel et al., 2018), with � 2 ½0:01; 0:1�.

D. Frequency modulated signals and phase
compensation

Source deconvolution is a powerful tool but it requires

an accurate knowledge about the source signal structure,

which is often not the case for bioacoustic signals. Here, we

present an alternative deconvolution approach for frequency

modulated (FM) source signals, where the precise nature of

the FM signal is unknown. We find, practically speaking,

that only a rough estimate of modulation phase is needed

and often can be estimated from the received signal. This

rough estimate can subsequently be used to perform phase

compensation, and then warping.

Even if one does not know the true frequency-

dependent amplitude of the source signal, if one knows the

source phase /sðf Þ or, equivalently, its time-frequency law

ssðf Þ ¼ ð1=2pÞ½@/sðf Þ=@f �, then it is possible to compensate

for the source phase in the received signal by computing

(Bonnel et al., 2014)

ypcðf Þ ¼ yðf Þe�j/sðf Þ: (18)

Such a process is not a true source deconvolution, as the

amplitude of the received signal has not been corrected.

However, the phase of ypcðf Þ has become the same as the

phase of the channel impulse response. Warping can thus be

applied on ypcðf Þ.
In a real-life scenario where the source phase is

unknown, the important point is to estimate /sðf Þ from the

data. It is actually done by estimating the source TF law

ssðf Þ, which is later converted to /sðf Þ so that phase com-

pensation can be performed.

To do so, a rough estimate of ssðf Þ can be obtained by

manually tracing the arrival of mode 1 (or the lowest-order

mode) on the received spectrogram. Since mode 1 is gener-

ally the least affected by dispersion, its TF shape on the

FIG. 9. (Color online) Importance of source deconvolution. (a) Spectrogram of the impulse response and (b) spectrogram of the corresponding warped sig-

nal. (c) Spectrogram of the received signal when the source is an impulse followed by bubble pulses, and (d) spectrogram of the corresponding warped sig-

nal. (e) Spectrogram of the signal after source deconvolution and (f) spectrogram of the corresponding warped signal.
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received signal usually provides a good initial estimate of

the source TF law. In practice, ssðf Þ is usually approximated

by a piecewise linear function, which is defined by manually

selecting several TF points on the spectrogram, and then lin-

early interpolating between them.

A MATLAB code to perform this procedure is provided in

the supplementary material.1 Its use is illustrated here on a

simple example. Once again, we re-use the noisy Pekeris

waveguide model. The spectrogram of the environmental

impulse response, as well as the spectrogram of the corre-

sponding warped signal are presented in Figs. 10(a) and

10(b). These spectrograms are the same as those presented

earlier, serving as a reference to visually assess the efficacy

of phase compensation.

The source signal considered here is a non-linear FM

sweep of constant amplitude. The source time-frequency law

ssðf Þ is shown in Fig. 10(c) as a red curve. The spectrogram

of the received signal, which combines both environmental

dispersion and the source sweep, is shown in Fig. 10(c). The

source ssðf Þ effectively tilts the whole TF pattern, as was

explained in Sec. II D. The spectrogram of the corresponding

warped signal is unusable [Fig. 10(d)].

As explained above, to perform phase compensation,

we assume that the source TF law can be approximated by a

piecewise linear function. In this case, we show that a single

linear piece is (nearly) enough to filter the modes. To per-

form phase compensation, we assume that the source TF

law is a linear frequency modulation that goes from 100 to

0 Hz in 0.8 s, as illustrated by the black line in Fig. 10(c).

The spectrogram of the signal after phase compensation is

shown in Fig. 10(e), which one can see is qualitatively simi-

lar to the spectrogram of the impulse response [Fig. 10(a)].

The spectrogram of the corresponding warped signal is

shown in Fig. 10(f), which demonstrates how the modes

have been really well separated, although mode 3 is less

tonal than in Fig. 10(b).

This result illustrates that warping is robust to uncer-

tainty in the source signal, provided that the source signal

has a relatively simple frequency-dependent phase. It can

be used to separate modes when little information is avail-

able about the source, apart from the fact that it is fre-

quency modulated. Warping is thus perfectly adapted to

the study of signals like those of baleen whale vocaliza-

tions in shallow water. It has notably been applied to

localize bowhead whale calls in the Arctic (Bonnel et al.,
2014; Warner et al., 2016), which are frequency modu-

lated signals with an unknown TF law (and thus an

unknown phase).

FIG. 10. (Color online) Importance of phase compensation. (a) Spectrogram of the impulse response and (b) spectrogram of the corresponding warped sig-

nal. (c) Spectrogram of the received signal when the source is a non-linear FM sweep, and (d) spectrogram of the corresponding warped signal. (e)

Spectrogram of the signal after phase compensation and (f) spectrogram of the corresponding warped signal. On (c), the red curve is the true source instanta-

neous frequency, while the black line is the empirical estimate used to perform phase compensation.
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VI. APPLICATIONS

Section V explained how to practically apply warping

in various scenarios. In this section, we assume that warping

has been correctly applied and we present some examples of

post-processing applications. We show how warping can be

used to filter modes and/or estimate a dispersion curve.

Then we illustrate how estimated dispersion curves can be

used for source ranging in a waveguide.

A. Modal filtering and dispersion curve estimation

We once again consider our favorite signal simulated in

the noisy Pekeris waveguide, as in Sec. V. Choosing the

time origin as best as possible, we thus reproduce the sce-

nario presented in Fig. 8(a) (although the noise realization is

not identical).

1. Warping

Because we want to illustrate the whole processing chain,

we reproduce the warping steps presented earlier. The time

series of the signal under study is presented in Fig. 11(a). The

corresponding spectrogram is shown in Fig. 11(b). This spec-

trogram is not useful for modal filtering, but it will be used

later to visually assess the quality of the filtering result. The

received time series is then warped, and the result is shown in

Fig. 11(c), along with its spectrogram in Fig. 11(d).

Before going further with post-processing, it is of para-

mount importance to obtain the best possible spectrogram

for the warped signal. This can be quantified by the separa-

tion of the warped modes: it is required to have them as hor-

izontal—or at least as separated from each other—as

possible. For real life scenarios, if the source is impulsive or

if source deconvolution has been used, we advise trying sev-

eral time origins (cf. Sec. V B), and choosing the iteration

that gives the best spectrogram for the warped signal. A few

iterations (�1–5) are usually adequate.

If the source has an unknown frequency modulation,

then one has another degree of freedom to estimate, which

is the source TF law. Once again, we advise an iterative

trial-and-error process, iterating both on source TF law and

time origin, until the warped modes are separated on a spec-

trogram. This process, while relatively cumbersome for

warping beginners, can often be performed within a few

minutes by experienced users. A click-and-play routine to

do so is provided in the supplementary material.1

2. Time-frequency filtering of warped modes

The next step is to filter a warped mode using TF filter-

ing. TF filtering is easily done by defining a mask in the TF

domain, which is 1 in an area of interest A, and 0 elsewhere.

Formally, we defineMðt; f Þ, withMðt; f Þ ¼ 1 if ðt; f Þ 2 A,

and Mðt; f Þ ¼ 0 if ðt; f Þ 62 A. The TF representation under

study is then multiplied by Mðt; f Þ, which effectively iso-

lates the content of the signal that is in A (Kozek and

Hlawatsch, 1992). This is similar to basic bandpass filtering

FIG. 11. (Color online) Modal filtering. (a) Time series of the received signal. (b) Spectrogram of the received signal. (c) Time series of the warped signal.

(d) Spectrogram of the warped signal. The limit of the TF mask that is used to filter mode 2 is illustrated as a red polygon. (d) Spectrogram of warped mode

2. (e) Time series of warped mode 2. (f) Time series of mode 2 at the end of the processing chain (warping, filtering, inverse warping), and comparison with

the theoretical time series. (h) Power spectral density (PSD) of mode 2 at the end of the processing chain, and comparison with the theoretical PSD. (i)

Estimated dispersion curve for mode 2, and comparison with the theoretical dispersion curve. The estimated dispersion curve is also superimposed as a black

curve on the original spectrogram [panel (b)].
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performed in the frequency domain, except that a TF region

is isolated instead of a simple frequency band.

For this application, TF filtering is performed on the

spectrogram of the warped signal. The only trick is to define

a region A that isolates a warped mode. Although automatic

processing can be used, we suggest initially defining the

mask manually by looking at the spectrogram; a click-and-

play routine to do so is provided in the supplementary mate-

rial.1 An example of a mask for filtering mode 2 is illus-

trated in Fig. 11(d) as a red contour: the area within the

contour is the area A. When the spectrogram of the warped

signal is multiplied with this mask, the spectrogram of a sin-

gle warped mode is obtained, as illustrated in Fig. 11(e).

The manual definition of the mask introduces another

subjective operation in the modal filtering process. However,

this one is relatively benign: if warping has been correctly

performed, then the modes are well separated, and the exact

selection of the mask does not matter. As an example, this is

the case in Fig. 11(d). As long as the chosen mask is wide

enough to encompass a mode, yet small enough not to over-

lap with another mode, then the TF filtering should be suffi-

cient. In real life scenarios, one may still need to iterate this

operation a few times. We do advise checking the quality of

modal filtering by estimating the modal dispersion curve and

comparing it with the original spectrogram, as illustrated in

Fig. 11(b). The process to do so is explained below.

3. Isolating modes in the original time domain

After the masking process, we have a single warped

mode in the TF domain. The following steps are to invert all

the previous operations, except filtering. We first go from

the TF domain to the time domain by computing an inverse

short-time Fourier transform. The result, illustrated in Fig.

11(f), is the time series of a single warped mode. Such a

warped mode can then be unwarped using inverse warping,

which leads to the time series of a single mode. This is the

end result of modal filtering. The whole processing chain

extracts the time series of a single mode from the original

signal that combines all the modes.

The filtered mode 2 is presented in Fig. 11(f), which also

shows the theoretical time series, obtained by direct simula-

tion. There is an excellent match between the filtered and the-

oretical mode time series and their power spectral densities

(PSD), as shown in Fig. 11(g). For practical applications, this

match could be quantified using a normalized mean squared

error, as is traditionally done in estimation theory.

The filtering result presented in Fig. 11 is not perfect:

the amplitude of the filtered mode is slightly oscillating and

the filtered mode peaks at a frequency different from the

true one. This likely results from interference with other

modes that have not been completely rejected by warping.

Also, the filtered mode seems to have a cutoff frequency

that is slightly too high. This is because the theoretical mode

contains energy between the true cutoff and the Airy phase.

This part of the mode is not modeled by warping, and thus is

nearly impossible to filter. However, this part of the mode is

generally highly attenuated during propagation, and typi-

cally barely visible on real data (except when very powerful

sound sources are used). This is unlikely to cause trouble to

users that are interested in marine mammal localization, but

is a known drawback for users that are interested in geoa-

coustic inversion.

4. Dispersion curve estimation

Once modes have been filtered, the game is won. As

stated in the Introduction, filtered modes can be used as

input data for many applications. However, one last process-

ing step can be performed before turning to further applica-

tions: estimation of the modal dispersion curve (the TF

positions of the modes). This is trivial to do once modes are

filtered, as filtered modes are simple mono-component sig-

nals. The exercise is thus to estimate the instantaneous fre-

quency (or group delay) of a mono-component signal. Many

methods are available to do so (Boashash, 2015). We sug-

gest computing the average time (first frequency moment)

of the spectrogram of the filtered mode. A simple MATLAB

code to do so is provided in the supplementary material.1

Going back to the previous example, the estimated dis-

persion curve of mode 2 is presented in Fig. 11(i) and com-

pared to the theoretical one. The estimation has been

performed over the entire signal bandwidth, but the modal

dispersion curve must be restricted to a frequency band of

interest. Here, we have an excellent match over 45–80 Hz,

which is the band where the mode is mostly energetic.

Restricting the dispersion curve to a frequency band of

interest can be done automatically by setting a threshold on

the filtered mode PSD, or manually by assessing the frequency

band where there is a good match between estimated disper-

sion curve and spectrogram [see Fig. 11(b)]. Since warping

requires several manual operations anyway, we advise doing

this manually as well. In any case, even if an application does

not require dispersion curve estimation, we still advise esti-

mating the dispersion curves and comparing them with the

original spectrogram. This is an easy quality check for assess-

ing modal filtering performance for real life applications.

5. Further technical details

As a technical side note, let us look further at the errors

between the estimated mode and the theoretical one.

Visually, it is clear that these errors are quite small [Figs.

11(g), 11(h), 11(i)]. However, it is also clear that the error sta-

tistics are not trivial. In particular, the errors are correlated.

As an illustration, one can look at the estimated dispersion

curve on Fig. 11(i). The mode arrival time is consistently

over-estimated between 60 and 70 Hz, which shows the high

correlation of the error, at least in this frequency band. This

must be taken into account for applications that require a

proper statistical uncertainty characterization, such as

Bayesian geoacoustic inversion.

Also, one can see that in the frequency band where the

mode is energetic, the estimated dispersion curve [Fig. 11(i)]

is better estimated than the mode amplitude [Fig. 11(g)],
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which notably peaks at a wrong frequency. This probably

explains why most successful applications of warping—and

particularly environmental inversion which requires accurate

environmental data—are based on estimated dispersion

curves, rather than on raw filtered modes. In other words,

warping is successful in recovering accurate relative timing

between modes (phase), less so when extracting relative or

absolute modal amplitudes.

Last but not least, modal filtering has been illustrated

here for mode 2. To filter several modes, the process must be

iterated. Usually, there is no need to warp the original signal

several times, one can simply design a new mask correspond-

ing to another mode [cf. Fig. 11(d)]. Still, on rare occasions,

it may be necessary to change time origin and restart the

modal filtering process from scratch (see Sec. V B).

B. Source localization

In this section, we illustrate how the modal dispersion

curve, smðf Þ, can be used to solve an inverse problem.

Because this is not the main focus of the tutorial but a mere

illustration of warping capability, we keep this illustration

as simple as possible. We thus focus on source localization,

and more specifically the estimation of the source/receiver

range. More advanced applications are covered by the cita-

tions given in Appendix B.

The concept of source localization using dispersion

curves is relatively easy. On one hand, we have modal dis-

persion curves that have been estimated from the received

signal; these will be called data. On the other hand, we have

a propagation model that enables the simulation of disper-

sion curves; these will be called replicas. To localize the

source, the idea is to iterate over many candidate source

positions (as well as other environmental parameters if

needed), and to quantify the degree of match between data

and replicas. The position of the source is estimated by

selecting the position of the simulated source that provides

the best match between data and replicas.

Complex propagations models can (and should) be used

to compute the replicas for optimal source localization.

However, this is not within the scope of this tutorial, so a

simple source localization will be illustrated using the

Pekeris waveguide (see Sec. II C) as an environmental

model. We further assume that water depth D and water

sound speed cw are well-known, which is realistic for real

life applications, although cw usually depends on depth. The

seabed sound speed cb is unknown, and will be estimated as

part of the inversion problem. The seabed density is also

unknown, but it is arbitrary fixed at qb ¼ 1600 kg/m3 to

keep the inversion simple. Last, but not least, source and

receiver depths are considered unknown. However, a feature

of acoustic waveguide propagation is that the source/

receiver depths do not influence the modal phase term and

thus do not impact the dispersion curves, so they can thus be

ignored. As a result of this logic, two parameters will be

estimated as part of the inversion process: source/receiver

range r and seabed sound speed cb. Estimated values are

noted with an underlying hat: r̂ and ĉb . Note that it is not

expected for ĉb to be realistic. As in Collins and Kuperman

(1991), the idea is to adapt the environmental model to help

localization, not to perform a proper seabed geoacoustic

inversion.

To formalize the localization method, we denote the

data as sdata
m ðf Þ and the replicas as srep

m ðf ; r; cbÞ. Note that

replicas depend on r and cb, as those are needed to compute

the simulated dispersion curves. If the source is impulsive,

the match between data and replicas can be directly quanti-

fied. However, the source and receiver are generally not syn-

chronized. There is thus the need to include an unknown

time shift parameter dt within the data/replicas comparison.

Formally, using a simple least square fit,

r̂; ĉb ; d̂t
� �

¼ arg min
r;cb;dt½ �

�
X

m

X
f

sdata
m ðf Þ � srep

m ðf ; r; cbÞ þ dt
� �2

:

(19)

If the source is not impulsive but its waveform is known,

then it can be localized using Eq. (19) after source deconvolu-

tion. If the source is an unknown frequency modulation, one

cannot use Eq. (19) anymore. Indeed, the replicas now depend

on the unknown source modulation tsðf Þ, as shown in Eq. (6).

One way to go around this issue is to match dispersion curve

differences instead of dispersion curves,

r̂; ĉb½ � ¼ arg min
r;cb½ �

X
m 6¼n

X
f

sdata
m ðf Þ � sdata

n ðf Þ
� ��

� srep
m ðf ; r; cbÞ � srep

n ðf ; r; cbÞ
� �

Þ2; (20)

with srep
m ðf ; r; cbÞ replicas that are computed as if the source

were impulsive, as in Eq (19).

Note that Eq. (20) can also be used to localize impulsive

sources. Its benefit is that it removes the need to invert for

dt. Its drawback is that it requires that the data contain at

least two modes with a common frequency band, while Eq.

(19) can be applied to a single mode, and/or to several

modes that do not overlap in frequency.

The last step for source localization is to correctly per-

form the minimization involved in both Eqs. (19) and (20).

This can be done using advanced optimization algorithms

(Bonnans et al., 2006). However, this is unnecessary here,

as only 2 or 3 parameters are considered. The minimization

can thus be done using a grid search. A simple MATLAB code

to do so is given in the supplementary material.1 Source

localization (and warping) will be illustrated on experimen-

tal examples in Sec. VII.

VII. EXPERIMENTAL EXAMPLES

This section provides three examples of warping appli-

cations for experimental signals: an impulsive right whale

vocalization, a controlled tomography source with known

waveform, and a frequency modulated vocalization from a
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bowhead whale whose TF law is not known a priori. They

have been chosen to illustrate warping approaches that par-

allel the circumstances outlined in Sec. V.

The data and MATLAB code associated with these exam-

ples are provided as supplementary material.1 Note that

these examples are extracted from previous publications by

the authors, and thus more detailed background information

about the data and scenarios are available (Bonnel et al.,
2014; Bonnel et al., 2018; Thode et al., 2017).

A. Right whale gunshot

We first illustrate warping on a sound that is a pure

impulse: the so-called “gunshot” sound (Crance and

Berchok, 2016; Parks and Tyack, 2005) emitted by a North

Pacific right whale. The data example used here was

recorded in 2013 in the southeastern Bering Sea federally

designated right whale critical habitat by the Alaska

Fisheries Science Center, Marine Mammal Laboratory

(Wright, 2017). This signal has been previously studied in

Thode et al. (2017). It has notably been localized using sin-

gle receiver matched mode processing (joint localization/

environmental inversion): its estimated range from the

hydrophone on which it was recorded is 8.7 km [Thode

et al. (2017), last line of their Table I].

The spectrogram of the received signal is presented in

Fig. 12(a). It shows modes that are quite well separated;

indeed, modes could probably be filtered and isolated by a

masking process applied on the original spectrogram. This

is not always the case for baleen whale signals, but the call

is used here to provide an easy means for a user to check

that the warping process has been applied correctly. The

spectrogram of the warped signal is presented in Fig. 12(b).

It is interesting to see here that the warped mode 1 is widely

spread in frequency, while the warped mode 4 is higher in

frequency and clearly isolated from the other modes. This is

a strong indication that the experimental environment differs

substantially from the isovelocity waveguide assumption

used for warping. Nonetheless, modes can still be filtered,

and the TF masks that are used are shown in Fig. 12(b). The

corresponding estimated dispersion curves are shown in Fig.

12(a). They perfectly match the underlying spectrogram,

illustrating the success of the modal filtering operation.

The estimated dispersion curves are then used as an input

for localizing the gunshot. As the source is assumed to be

impulsive, Eq. (19) is used for localization. The environmental

model used to compute the replicas is a Pekeris waveguide

with D¼ 51 m, cw¼ 1450 m/s, qw ¼ 1000 kg/m3, and qb

¼ 1600 kg/m3. The other parameters required to compute the

replicas (r, cb and dt) are included in the inversion. The search

space is as follows: r 2 ½2; 16� km with 100 m steps,

cb 2 ½1550; 2000� m/s with 10 m/s steps, and dt 2 ½�7;�5� s

with 0.01 s steps. Note that if time origin has been set properly

for warping, then the expected value for dt is about r=cw. One

can start with wide search bounds and coarse steps for dt, and

gradually narrow the bounds and decrease the steps.

Localization results are illustrated in Fig. 13. Figure

13(a) shows the match between the data and predicted repli-

cas (i.e., replicas computed using the optimal localization/

environmental parameters). The match is not perfect but

looks good enough. It is unlikely that a better match can be

obtained, as the experimental environment is complex, and

the inversion is performed with a simplistic Pekeris wave-

guide. A one-dimensional slice of the least square fit is pre-

sented in Fig. 13(b). It shows a smooth global minimum,

which suggests that the minimization was successful. The

estimated range is r̂ ¼ 8:8 km. It is consistent with results

obtained by the detailed environmental inversion in Thode

et al. (2017), illustrating that the simple procedure obtained

here is enough to do as well (or as poorly) as more complex

methods. Such a result is obtained because dispersion curves

are highly sensitive to range, and relatively less sensitive to

many environmental details, which makes dispersion curve

inversions relatively robust.

FIG. 12. (Color online) Gunshot signal analysis. (a) Spectrogram of the received signal and estimated dispersion curves. (b) Spectrogram of the warped sig-

nal and masks that are used to filter the modes.
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Before going further, note that localization results

should always be checked by examining the data/replica

match and the error surface. If the data/replica match is very

poor or the least squares fit is not smooth, or if one of the

estimated parameters is found at a boundary of the search

grid, then the inversion probably performed poorly, and fur-

ther investigation is required.

B. Combustive sound source

For our second example, we consider the sound from a

Combustive Sound Source (CSS) (McNeese et al., 2010)

recorded during the Seabed Characterization Experiment

that took place on the New England mud patch in March/

April 2017 (Knobles and Wilson, 2017). The specific signal

presented here has previously been studied in Bonnel et al.
(2018). Its range, known through GPS measurement, is

4.8 km.

The CSS source is known to be a strong impulse, pre-

ceded by a weak precursor and followed by several bubble

pulses. It was monitored at close range during the experi-

ment, and thus a source deconvolution can be performed

before warping. The time series of the received signal is

shown in Fig. 14(a), and the corresponding signal is shown

in Fig. 14(b). The TF modal dispersion is highly contami-

nated by the source waveform. However, the spectrogram of

the signal obtained after source deconvolution, shown in

Fig. 14(c), is much cleaner. Warping can then be applied

and modes can subsequently be filtered. The spectrogram of

the warped signal is shown in Fig. 14(d), and the estimated

dispersion curves are superimposed in Fig. 14(c). It is very

interesting to see that many modes have been estimated, and

that a gap exists between the low-order modes and the high-

order modes. While the first nine modes are modes 1 to 9

with little doubt, it is impossible to identify the last five

high-order modes without further effort. The curious reader

may read Bonnel et al. (2018) to learn that the estimated

high-order modes are modes 14 to 18. This example is a per-

fect illustration of warping’s capability to filter modes,

including highly dispersive high-order modes.

The estimated dispersion curves are then used as an

input for localizing the CSS signal. However, inversion is

restricted to the first four modes and to the frequency band

100–300 Hz. Because mode 1 is not estimated in this fre-

quency band, it is effectively excluded from the localization.

FIG. 14. (Color online) CSS signal analysis. (a) Received signal. (b) Spectrogram of the received signal. (c) Spectrogram of the signal after source deconvo-

lution, and estimated dispersion curves. (d) Spectrogram of the signal after source deconvolution and warping. Figure from Bonnel et al. (2018).

FIG. 13. (Color online) Gunshot localization. (a) Data and replicas. (b)

One-dimensional slice of the least square fit, with cb ¼ ĉb and dt ¼ d̂t.
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As source deconvolution has been performed, Eq. (19) is

used for localization. The environmental model used to com-

pute the replicas is a Pekeris waveguide with D¼ 69.5 m,

cw ¼ 1464:5 m/s, qw ¼ 1000 kg/m3, and qb ¼ 1600 kg/m3.

Other parameters are included in the inversion. The

search space is as follows: r 2 ½3; 6� km with 100 m steps,

cb 2 ½1470; 2000�m/s with 10 m/s steps, and dt 2 ½�4;�2� s

with 0.01 s steps.

Localization results are illustrated in Fig. 15. Figure

15(a) shows the match between the data and predicted repli-

cas, and Fig. 15(b) shows a slice of the least square fit. Both

are good, suggesting that the localization scheme is success-

ful. The estimated range, r̂ ¼ 4:6 km is fully consistent with

the GPS ground truth.

Interestingly, the data/replica match is nearly perfect

[Fig. 15(a)]. This is because in the considered frequency

band and for the considered modes, the experimental envi-

ronment can be well-approximated with a Pekeris wave-

guide. Actually, the experimental environment is more

complicated than that (Bonnel et al., 2019), and such a

match would have been impossible over a broader frequency

band, and/or for a greater number of modes. Localizing the

source using all the modes would have required the use of

an environmental model much more complex than the

Pekeris one.

C. Bowhead whale upsweep

The third and final example in this tutorial is a bowhead

whale upsweep recorded off Deadhorse (Alaska) by Scripps

Institution of Oceanography in August 2010 (Thode et al.,
2012). The specific signal presented here has previously

been studied in Bonnel et al. (2014). Its estimated range,

measured with a distributed array of vector sensors, is 14.1

6 1.8 km (Bonnel et al., 2014, call 7 in their Table I).

The signals emitted by bowhead whales are not stereo-

typed, and thus the exact TF structure of the original call is

unknown. It is thus impossible to do source deconvolution.

As an alternative, phase compensation (Sec. V D) must be

used before warping.

The spectrogram of the received signal is presented in

Fig. 16(a). The source TF law is estimated with three linear

pieces. As explained in Sec. V D, an easy way to do so is to

roughly follow the TF contour of mode 1. The chosen contour

is plotted as a black curve in Fig. 16(a). Phase compensation is

then performed, and the resulting spectrogram is plotted in

Fig. 16(b). The result is definitely not perfect, but good enough

to perform warping. The warped spectrogram is presented in

Fig. 16(c). The TF masks that are used to filter the modes are

also shown as red polygons. The corresponding estimated

FIG. 16. (Color online) Bowhead whale upsweep analysis. (a) Received signal with estimated dispersion curves (red) and estimated source TF law (black).

(b) Spectrogram of the signal after phase compensation. (c) Spectrogram of the signal after phase compensation and warping. Figure adapted from Bonnel

et al. (2014).

FIG. 15. (Color online) CSS localization. (a) Data and replicas. (b) One-

dimensional slice of the least square fit, with cb ¼ ĉb and dt ¼ d̂t. Note that

the data presented on panel (a) is actually a subset of the estimated disper-

sion shown on Fig. 14(d); data is restricted to modes 1 to 4 and to the fre-

quency band 100–300 Hz.
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dispersion curves are shown in Fig. 16(a). They perfectly match

the underlying spectrogram, illustrating the success of the

modal filtering operation. Note that such a result was obtained

after several manual iterations to tune the estimated source TF

law [Fig. 16(a)], the time origin of the signal after phase com-

pensation [Fig. 16(b)] and the TF masks [Fig. 16(c)].

The next step is source localization. Because the exact TF

law of the source is unknown, Eq. (20) is used. The raw dis-

persion curves of modes 1, 2, and 3 are combined to form dis-

persion curve differences between modes 2–1 and modes 3–2.

The corresponding data are shown on Fig. 17(a). The environ-

mental model used to compute the replicas is a Pekeris wave-

guide with D¼ 55 m, cw¼ 1442 m/s, qw ¼ 1000 kg/m3, and

qb ¼ 1600 kg/m3. The search space is as follows: r 2 ½5; 20�
km with 100 m steps, and cb 2 ½1550; 2000� m/s with 10 m/s

steps.

Localization results are illustrated in Fig. 17. Figure

17(a) shows the match between the data and predicted repli-

cas, and Fig. 17(b) shows a slice of the least square fit. The

estimated range, r̂ ¼ 16:4 km, is fully consistent with the

independent estimates obtained with a distributed array of

vector sensors.

Interestingly, the data/replica match is far from perfect

[Fig. 17(a)]. One dispersion curve difference is underestimated,

while the other is overestimated. However, the overall behavior

of the least square fit is still smooth, which suggests that the

two errors are compensating to provide a decent localization

result. The misfit between data and predicted replica is due to

the experimental environment, which has a range-dependent

bathymetry. It is thus largely different from the Pekeris wave-

guide used for inversion. Nonetheless, dispersion curves are so

sensitive to range that the localization result is correct.

VIII. CONCLUSION

This tutorial has reviewed both theoretical and practical

uses of warping to study low-frequency transient sounds in

shallow water. Warping can be used to filter modes from a

single receiver, an operation that had traditionally been per-

formed with dense vertical line arrays. This reduction in

hardware requirements has opened the door for applying

sophisticated acoustical techniques to single-hydrophone data

sets, including marine mammal localization or geoacoustic

inversion. The tutorial covered in detail modal filtering using

warping, and presented a simple source localization algo-

rithm as a direct application of warping.

An important point of warping is that it requires a

model of the sound propagation. In this tutorial, we have

presented a warping operator based on an ideal isovelocity

waveguide. Such a model has been widely used in the litera-

ture, and is known to enable modal filtering in various real-

life scenarios. Its main advantages are that it is simple but

robust, and allows warping all the modes with a single trans-

form. While this simple transform works well in most

shallow-water environments, we have noted that isovelocity

warping may not work in environments dominated by strong

reflection (e.g., a sharp thermocline), or situations where

modal arrivals actually cross in the time-frequency domain.

However, warping operators can also be based on more

complex models. This has been explored in the literature.

Proposed models include the beam-displacement-ray-mode

theory (Niu et al., 2014a,b), an approximated Pekeris wave-

guide (Le Touz�e et al., 2009), or a waveguide invariant

approximation (Bonnel et al., 2013b; Qi et al., 2015).

Although these new warping operators are interesting in the-

ory, they have not been used extensively for concrete appli-

cations. As far as we know, no study has compared their

respective performance in terms of modal filtering. The

potential gain brought by these more complex operators

remains an open question. Nonetheless, the waveguide

invariant approach is particularly promising for studying

signals in strongly refracting environments, i.e., with a nega-

tive waveguide invariant. This is yet to be demonstrated on

experimental data.

Interestingly, these new warping operators still warp all

the modes at once. This is a feature which makes them

promising candidates for advanced modal filtering. On the

other hand, these operators are unable to handle specific dis-

persion features, such as modes crossing in the TF domain.

Such a behavior may be due to a strong Airy phase, and/or

to a given mode being ducted in either the water column or

the seabed. A specific warping operator, based on a numeri-

cal approximation of the dispersion curves, has been pro-

posed to handle these situations (Bonnel et al., 2017). It

improves filtering performance for mode 1, but not for the

other modes. Filtering modes that cross in the TF domain

remains an open question. This will need to be solved for

shallow water environments when the sound speed profile

has a gradient strong enough to fully trap low order modes.

Such a situation is classical in the Arctic during summer but

also happens at lower latitudes under specific oceanographic

conditions. Spectrograms of experimental data with this spe-

cific features can be found in (Michalopoulou and Pole,

2016) or (Roth et al., 2012).

FIG. 17. (Color online) Bowhead whale upsweep localization. (a) Data and

replicas. (b) One-dimensional slice of the least square fit, with cb ¼ ĉb .
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Last but not least, this tutorial is based on the underly-

ing assumption that the signal under study is a transient sig-

nal (such as an impulse or a frequency-modulated sweep)

recorded on a single hydrophone. If the signal is not tran-

sient, such as broadband noise by a ship, then the method

cannot be applied. In this case, a solution may be to work

with the autocorrelation of the signal. Indeed, warping the

autocorrelation of the signal has been proposed in Qi et al.
(2015) and Zhou et al. (2014). The method seems very

promising but, as far as we know, it has never been applied

on broadband noise signals. Here again, there is the need for

an experimental study. If the method is successful, it will

open a new research avenue. Potential applications include

ship localization, and/or tomography using sources of

opportunity.

Overall, the single receiver capacity offered by warping

opens the door to new experimental designs with single-

hydrophone units that can be spread over an area of interest,

forming a wide, non-synchronized, distributed array. In

this configuration, warping may be used on each single-

hydrophone unit independently, removing the need of coher-

ent processing (and thus time synchronization) along the

array. Interestingly, single hydrophone units are also easy to

integrate into cheap robotic platforms. Because warping

removes the need for time synchronization between sensors,

robots may be used as a swarm to form a large array.

However, no bulk automated algorithm yet exists for warp-

ing, and thus manual trial and error is a required procedure

at present in order to obtain the best modal extractions. The

automation issue will need to be solved before warping can

be automatically applied on robotic platforms. Nonetheless,

warping allows revisiting existing long-term datasets, and

may open possibilities for localization/environmental infor-

mation in situations that were previously not envisioned

when the data were initially collected.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research

(Task Force Ocean, project N00014-19-1-2627) and by the

North Pacific Research Board (project 1810). Original warping

developments were supported by the French Delegation

Generale de l’Armement.

APPENDIX A: TIME WARPING AND FREQUENCY
WARPING

This appendix quickly reviews the difference between

time and frequency warping. The starting point of

dispersion-based warping is the need for a model of the

modal phase. Because modal propagation is conveniently

defined in the frequency domain through Eq. (2), we usually

have a frequency domain model for the phase /mðf Þ. As a

result, it is natural to consider frequency warping, with

warping function /�1
m ðf Þ. However, the definition of modal

travel time through group speed is a stationary phase

approximation. The same approximation can also be used to

obtain a time domain expression for the modal phase, /mðtÞ.

As a result, time warping also becomes a viable alternative,

with warping function /�1
m ðtÞ.

Note that warping that operates in the time domain is

usually dubbed “time warping,” although its results are con-

veniently displayed in the frequency domain. On the other

hand, warping that operates in the frequency domain is usu-

ally dubbed “frequency warping,” although its results are

conveniently displayed in the time domain. In this tutorial,

we consider time warping. By warping the time axis, we

modify the frequency content of modes, and thus obtain a

result that is conveniently described in the frequency

domain.

Nonetheless, the use of time warping versus frequency

warping in a given context can still be questioned. As an

example, Fig. 18 illustrates the time and frequency warping

principles for three different signals. Time and/or fre-

quency warping can be chosen, depending on the signal’s

TF distribution (i.e., dispersion curve). If, at any given

instant, only one frequency exists, then the signal can be

studied with time-warping (e.g., signal 1 in Fig. 18), and

the TF shape of the warped signal becomes that of a contin-

uous tone. On the other hand, if any given frequency corre-

sponds with just a single time, then the signal can be

studied with frequency-warping (e.g., signal 3 in Fig. 18),

and the TF shape of the warped signal becomes an impulse.

Last but not least, if the dispersion curve is bijective, then

the signal can be studied with either time or frequency

warping (e.g., signal 2 in Fig. 18).

In an underwater acoustics context, if one ignores 3D

propagation effects, then the time of arrival of each mode at

a given frequency is uniquely defined (as for signals 2 and 3

in Fig. 18). As a result, frequency warping can always be

defined. If a closed-form expression for the modal phase

/mðf Þ is not available, then one can resort to a numerical

approximation, as obtained with a modal propagation code.

This has been illustrated in Bonnel et al. (2017).

On the other hand, time warping can only be applied for

simple propagation models where the frequency of a mode

is uniquely defined for a given time (as for signals 1 and 2 in

Fig. 18). As a counter example, this condition is violated in

non-ideal waveguides because of the Airy phase behavior:

at a given instant, a mode can be excited at two distinct fre-

quencies (as signal 3 in Fig. 18).

Simple propagation models exist for which both time

warping and frequency warping can be defined. The isove-

locity model considered in this tutorial is such a model.

Both time warping and frequency warping are presented in

Bonnel et al. (2010). Interestingly, time warping and fre-

quency warping defined using this model have very different

properties. As shown in this paper, time warping allows

warping all the modes at once. One the other hand, fre-

quency warping must be performed mode by mode (Bonnel

et al., 2010). This particular behavior does not seem particu-

larly intuitive. It illustrates the importance of studying both

time and frequency warping, because despite their analo-

gous behavior, they may have fundamentally different

properties.
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APPENDIX B: BRIEF LITERATURE OVERVIEW

1. Motivations for warping

The central objective of separating modes with a single

receiver with TF analysis is not new. A key notion here is

the modal TF dispersion. This simply refers to the

frequency-dependent time of arrival of the modes, which

sometimes can be visualized on a simple spectrogram.

Modal TF dispersion was first studied in the 1960s to under-

stand the propagation of explosive sounds in shallow water

(Barakos, 1962; Ewing et al., 1959). An interesting phenom-

enon—which is explained in Sec. II B—is that the modal

separation naturally increases with range. As a result, at

large ranges, modal arrivals become naturally separated in

time, and a simple spectrogram is enough to visualize their

TF dispersion. This theory was used for pioneering studies

in the 1960s (Barakos, 1962; Ewing et al., 1959). In the

1980s, fundamental studies by Zhou et al. showed how the

modal dispersion, as seen at long range in the time domain,

could be used to infer seabed properties (Zhou, 1985; Zhou

et al., 1987). Since then, with the advance of numerical sig-

nal processing and of TF analysis, the techniques have

advanced further. Modal TF dispersion has notably been

used for geoacoustic inversion (Potty et al., 2000; Potty

et al., 2004; Rajan and Becker, 2010) and for ranging

marine mammals (Abadi et al., 2014; Munger et al., 2011;

Wiggins et al., 2004). However, these studies have been per-

formed on sources at relatively distant ranges, so that modes

were clearly time-separated on a conventional spectrogram.

At shorter ranges, the modal arrivals blend together in time,

requiring further signal processing development to extract

modal information.

In a sense, the topic at hand is similar to the single

channel source separation problem in signal processing. A

single hydrophone (i.e., channel) is available, and the

received modes can be seen as different sound sources that

need to be separated. For speech processing, single channel

source separation is usually solved by training statistical

models on existing data [e.g., Grais et al. (2014), Jang and

Lee (2003), and Ozerov et al. (2007)]. Unfortunately, exist-

ing data with reliable labels are very sparse in ocean acous-

tics, notably because environmental impact and noise

degradation both impede reproducibility. As a result, alter-

native methods must be found.

Another option is to use more complex TF methods

[e.g., Taroudakis and Tzagkarakis (2004)], and/or to post-

processed traditional spectrograms with further signal proc-

essing methods [e.g., Michalopoulou and Pole (2016)]. Of

particular interest here, theoretical advances in TF analysis

for signals with dispersive group delays (Papandreou-

Suppappola et al., 2001) have led to the development of TF

methods specifically adapted for modal propagation (Bonnel

et al., 2013b; Chen et al., 2003; Hong et al., 2005; Le Touz�e
et al., 2009). Unfortunately, these methods have found very

limited applications, one interesting exception being a geoa-

coustic inversion study by Potty et al. (2008). We believe

FIG. 18. (Color online) Comparison between time-warping and frequency-warping. Signal 1 must be warped using time-warping. Signal 3 must be warped

using frequency-warping. Signal 2 can be warped using either time-warping or frequency-warping. The figure is from Bonnel et al. (2017).
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this is because the advanced TF literature is cryptic for non-

specialists, and in turn enigmatic for the end-users who may

need it.

Another option to analyze modal propagation at short

range is to use classical TF analysis, but to transform the

signal beforehand. This is particularly useful when using

invertible transforms, so that one can filter the modes in the

transformed space, and then go back to the original space.

This idea is similar to classical bandpass filtering in the fre-

quency domain, except that we are now considering trans-

forms that are more complex than the Fourier transform.

Warping, the topic of this tutorial, is an example of

advanced domain transform (Baraniuk and Jones, 1995).

When combined with a physical model of the propagation,

warping can be used to estimate modal dispersion (Bonnel

et al., 2010) but also to filter modes, and thus to recover sep-

arated modal time series (Bonnel et al., 2017).3

2. Warping in ocean acoustics

The theoretical use of warping to filter modes (Le

Touz�e et al., 2009) and localize an impulsive sound source

with a single receiver (Le Touz�e et al., 2008) was first intro-

duced by Le Touz�e et al. The first warping applications for

marine mammal localization (Bonnel et al., 2008) and geoa-

coustic inversion (Bonnel and Chapman, 2011) have been

proposed by Bonnel et al. Since then, warping has been

adopted in the underwater acoustic community, and has

been used for various applications.

Warping has notably been used for environmental esti-

mation studies, mostly seabed geoacoustic inversion

(Bonnel et al., 2013a; Bonnel et al., 2019; Bonnel et al.,
2012; Dong et al., 2017; Duan et al., 2016; Feng-Hua et al.,
2014; Petrov, 2014; Zeng et al., 2013), but also water col-

umn tomography (Ballard et al., 2014), as well as joint esti-

mation of water column and seabed properties (Warner

et al., 2015). On a more basic research point of view, it is

interesting to note that warping has also been used to esti-

mate modal depth functions (Bonnel et al., 2011; Thode and

Bonnel, 2015), as well as to filter modes from noise interfer-

ometry data (Sergeev et al., 2017; Tan et al., 2018).

Moreover, warping has been used for source localiza-

tion in shallow water (Le Touz�e et al., 2008; Qi et al., 2015;

Zhou et al., 2014), and the performance of such source

localization methods have been theoretically derived (Le

Gall et al., 2017). The warping based localization methods

have found application in bioacoustics. In particular, warp-

ing has been used to range baleen whales with a single sen-

sor (Bonnel et al., 2014; Crance et al., 2015) and/or to

estimate their calling depth (Thode et al., 2017). In the con-

text where several non-synchronized hydrophones were

available, warping has been used to estimate the latitude/

longitude position of marine mammals (Bonnel et al., 2008;

Warner et al., 2016).

A final application of warping is its utility as an alterna-

tive to source deconvolution to cancel the bubble pulse of a

nearly impulsive source (Niu et al., 2013). It has also been

applied on vertical line array data to estimate the array tilt

(Thode and Bonnel, 2015; Lu et al., 2017). Although this

tutorial focuses on underwater acoustics applications, it is

interesting to note that warping has been applied in many

other fields. It has notably been used to study ultrasonic

Lamb waves (De Marchi et al., 2009; De Marchi et al.,
2010; Xu et al., 2012; Xu et al., 2014) with a procedure that

is very similar to the one presented here: propagation mod-

els are used to predict dispersion curves, which are later

used to define warping operators. Warping is also heavily

used for speech processing (Aikawa, 1991; Benzeghiba

et al., 2007; Zhan and Westphal, 1997).

APPENDIX C: NUMERICAL IMPLEMENTATION OF
WARPING

1. Time and frequency domains

Before performing warping on sampled data using a

computer, the first practical step is correctly identifying the

time domain and the frequency domain of the original signal

y(t) and of the warped signal ywðtÞ. This subsection largely

reproduces a discussion that can be found in French in (Le

Touz�e, 2007).

Let us consider a signal y(t). We further assume that the

time domain of y is Dt ¼ ½tmin; tmax�, and that its frequency

domain is Df ¼ ½fmin; fmax�. Also, recall that warping is imple-

mented as if the environment were an ideal waveguide, so that

the signal is described by Eqs. (8) and (9). As a result,

tmin > tr. For convenience, we now time-shift the time axis so

that tmin ¼ ½tr�þ. In other words, we have Dt ¼�tr; tmax�.
As a next step, we will define the domains of the

warped signal, ywðtÞ. First, let us denote T the original time

axis, and �T the warped time axis. Because of the warping

definition, Eq. (7), any time �t in �T corresponds to hð�tÞ in T .

Conversely, any time t in T corresponds to h�1ðtÞ in �T .

Noting that h�1ðtÞ is a monotonically increasing function,

one finds that swðtÞ has a finite time domain

Dh
t ¼�th

min; t
h
max� ¼�h�1ðtminÞ; h�1ðtmaxÞ�

¼�0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
max � t2

r

q
�: (C1)

The next step is to assess the frequency domain of the

warped signal: Dh
f ¼ ½f h

min; f
h
max�.

To do so, one uses Eq. (12) which states that modes are

warped onto their cutoff frequencies fc;m. As a result, f h
min and

f h
max respectively correspond to the cutoff frequencies of the

minimal mode number (mmin) and maximal mode number

(mmax) of the original signal: f h
min ¼ fc;mmin

and f h
max ¼ fc;mmax

.

Although they fully define the frequency domain of the

warped signal, these formulas are not convenient from a sig-

nal processing point of view. They notably contain environ-

mental features (e.g., D, through fc;m) which are irrelevant

here, as the warping function does not use them. In the fol-

lowing, we seek formulas for f h
min and f h

max that are based on

signal/warping features (e.g., tmax, fmax) rather than on envi-

ronmental features (fc;m).
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To do so, the first step is to obtain the modal dispersion

curve from Eq. (9) by computing the mode instantaneous

frequency

�miso
ðtÞ ¼ 1

2p

@/miso
ðtÞ

@f
¼ ð2m� 1Þcw

4D

tffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � t2r

p : (C2)

Then, Eqs. (C2) and (11) are combined to define a time-

frequency dependent (non-integer) mode number

mðt; f Þ ¼ 2D

cw

h�1ðtÞ
t

f þ 1

2
: (C3)

Because m(t, f) is increasing with t and f, one finds that

mmin ¼
2D

cw

h�1ðtminÞ
tmin

fmin þ
1

2
¼ 1

2
(C4)

and

mmax ¼
2D

cw

h�1ðtmaxÞ
tmax

fmax þ
1

2
: (C5)

Recalling that f h
max ¼ fc;mmax

, one can define f h
max using

only the maximal time and maximal frequency of the origi-

nal signal

f h
max ¼

ð2mmax � 1Þcw

4D
¼ h�1ðtmaxÞ

tmax
fmax: (C6)

Similarly, one can show that f h
min ¼ 0. This leads to the final

definition of the frequency domain of the warped signal

Dh
f ¼ 0;

h�1ðtmaxÞ
tmax

fmax

	 

: (C7)

Equations (C1) and (C7) fully define the time and fre-

quency domain of the warped signal, using time and fre-

quency features from the original signal. Because both time

domain and frequency domain are finite, we can now pro-

ceed with questions related to sampling.

2. Discrete warping

Let us consider y½n�, the discrete version of the original

signal y(t). We assume it is sampled at frequency fs and has

N samples. We thus have y½n� ¼ yðtnÞ with tn ¼ tmin þ n=fs

and n 2 ½½0; N � 1��.
As explained in Appendix C 1, warping moves the sam-

ple at location tn in T to a new location tn ¼ h�1ðtnÞ in �T .

Because h�1 is non-linear, sampling in the warped domain

is irregular. The warped signal must thus be interpolated on

a regular time grid. This raises the question of the minimal

sampling frequency for the warped signal.

a. Sampling frequency

If the original signal has been correctly sampled, its

sampling frequency is fs > 2fmax. As a result, Eq. (C6)

becomes f h
max < ½h�1ðtmaxÞ=tmax�ðfs=2Þ, and thus the sam-

pling frequency of the warped signal

f h
s >

h�1ðtmaxÞ
tmax

fs: (C8)

Interestingly, one can obtain this result using some intu-

itive thought. The time derivative ½h�1�0ðtÞ ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � t2

r

p
is

decreasing and positive. As a result, the spacing of the irreg-

ular time grid in �T decreases as �t increases. In other words,

Dtn ¼ tn � tn�1 decreases as n increases. The smallest spac-

ing is thus DtN ¼ h�1ðtNÞ � h�1ðtN�1Þ, and it is tempting to

naively use it as a regular sampling step for the warped

signal.

In fact,

DtN ¼ Dt
h�1ðtNÞ � h�1ðtN�1Þ

Dt
’ Dt h�1½ �0ðtmaxÞ; (C9)

with Dt ¼ 1=fs the regular sampling period in T . Because

½h�1�0ðtmaxÞ ¼ tmax=h�1ðtmaxÞ, then

DtN ¼
1

fs

tmax

h�1ðtmaxÞ
: (C10)

This happens to be the minimal bound of Eq. (C8), and thus

DtN can be used as a regular sampling step in the warped

domain. In practice, if computation time is not an issue, one

may use f h
s ¼ 2=DtN for a better visual representation of the

warped signal.

b. Number of samples

The number of samples K of the warped signal is

obtained from its time domain Dh
t and sampling fre-

quency f h
s :

K ¼ ceil h�1ðtmaxÞ � h�1ðtminÞ
� �

f h
s

� �
; (C11)

with ceil(x) the nearest integer greater than or equal to x.

As stated in Appendix C 1, one usually chooses tmin ¼ ½tr�þ.

As a result h�1ðtminÞ ¼ 0, and thus K ¼ ceilðh�1ðtmaxÞf h
s Þ.

c. Interpolation

The discrete version of the warped signal yw½k� is thus

sampled at frequency f h
s with K samples, with tk ¼ k=f h

s ;
k 2 ½½0; K � 1��.

Remembering the discussion in Appendix C 1, any time
�t in �T corresponds to hð�tÞ in T . The value of the warped

signal yw½m� is thus given by the value of the original signal

at time hðk=f h
s Þ. Because it is unlikely that a sample exists

for the original signal at t ¼ hðk=f h
s Þ, the value at this spe-

cific time is obtained by interpolation. Although linear inter-

polation has been used in the past and gives satisfactory

results, it sometimes creates high frequency artifacts in the

warped signal (Arisdakessian, 2014). Therefore, we advise

using the Whittaker-Shannon interpolation (Abdul, 1977) to

J. Acoust. Soc. Am. 147 (3), March 2020 Bonnel et al. 1923

https://doi.org/10.1121/10.0000937

https://doi.org/10.1121/10.0000937


obtain the value of y(t) at any time t from its sampled

version,

yðtÞ ¼
XN�1

n¼0

y n½ �sincðtfs � nÞ: (C12)

d. Energy conservation

As a last step, one must compute the multiplicative fac-

tor jh0ðtÞj1=2
to conserve energy. It comes directly from Eq.

(10) and compensates for the time axis stretching/compres-

sion. Because h0ðtÞ ¼ t=hðtÞ, this factor is given asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh0½k=f h

s �j
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tk=hðtk Þ

p
for the kth sample of the warped

signal.

As a summary, the kth sample of the warped signal is

yw m½ � ¼

ffiffiffiffiffiffiffiffiffiffi
tk

hðtk Þ

s
s hðtk Þ
� �

; (C13)

with tk ¼ k=f h
s ; hðtk Þ ¼ ðtk

2 þ t2
r Þ

1=2
, and the quantity

y½hðtk Þ� is obtained from the original discrete signal y
through interpolation.

3. Inverse warping

Inverse warping can be seen as forward warping using

h�1ðtÞ as the warping function. However, for practical appli-

cations, one deals with an original sampled signal (N sam-

ples, sampling frequency fs), warps it (K samples, sampling

frequency f h
s ), and then unwarps it. As a result, inverse

warping does not require estimation of numbers of samples

and sampling frequency. These are known a priori: they are

identical to the properties of the original signal (N samples,

sampling frequency fs).
The only steps that need consideration when unwarping

a signal are proper interpolation and energy conservation.

Let yw denote the warped signal and yu the unwarped signal,

recovered from yw using inverse warping. The nth sample of

the unwarped signal simply becomes [via Eq. (C13)]

yu n½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tn

h�1ðtnÞ

r
yw h�1ðtnÞ
� �

; (C14)

with tn ¼ tmin þ n=fs; h�1ðtnÞ ¼ ðt2
n � t2r Þ

1=2
, and the quan-

tity yw½h�1ðtnÞ� obtained via interpolation of the warped dis-

crete signal yw.
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standalone MATLAB routine
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